
Abstract. The diagrammatic Rayleigh-SchroÈ dinger
perturbation theory for the interaction of two closed-
shell systems is developed up to the third order of pertur-
bation using orthogonalized orbitals. The interaction
energy is expressed by the Rayleigh-SchroÈ dinger pertur-
bation expansion. A simple approach for the estimation
of basis set superposition error is introduced. The
preliminary calculations of the intermolecular interac-
tions for the He dimer within the augmented cc-pVTZ
basis set are compared with the supermolecular ap-
proach, perturbation calculation in biorthogonal basis
sets and symmetry adapted perturbation theory results.

Key words: Perturbation theory ± Weak molecular
interaction ± Basis set superposition error ± He dimer
interaction

1 Introduction

Di�erent branches of science bene®t from the knowledge
of intermolecular interaction, and many methods have
been proposed for their study. The progress made during
the last two decades has been reviewed in a number of
articles and monographs [1±13]. It is especially worth-
while reading the recent work of Jeziorski et al. [14] in
which the results achieved in this ®eld are critically
reviewed. Methods for ab initio calculations of the
intermolecular interactions fall into two categories:

1. A supermolecular approach in which the interac-
tion energy between atomic or molecular systems is
calculated as the di�erence EAB ÿ EA ÿ EB, where EA�B�
and EAB are approximations to the energies of the
isolated systems and ``supersystem'' AB, respectively. An
attractive aspect of the supermolecular approach is the
fact that all techniques developed within the single-
molecule calculation can be used without any changes.

As a rule the interaction energy is several orders of
magnitude smaller than the total energy, and so very
precise calculations are mandatory. The methods used
must be size consistent [15], they must su�ciently
account for electron correlation, and monomer energies,
EA and EB, must be calculated using the full orbital basis
of the AB system in order to avoid the basis set
superposition error (BSSE) [16]. In the supermolecular
approach, the interaction energy is obtained as a single
number, its decomposition into contributions with a
clear physical interpretation is not straightforward, and
for a deeper physical understanding of the interaction
additional calculations are necessary [17].

2. In the perturbation theory (PT) approach, the
interaction energy is calculated directly as a sum of
contributions with direct physical interpretations. The
Hamiltonian for system AB is written as

ĤAB � ĤA � ĤB � V̂ ; �1�
where ĤA�B� is the Born-Oppenheimer Hamiltonian and
V̂ is the perturbation operator, which represents the
interaction [3].

When the exact wave functions for the interacting
systems are known and distances between them are
large, the standard Rayleigh-SchroÈ dinger expansion is
applicable. At distances with non-negligible overlap the
following main problems can be formulated:

1. The wave function of the ``supersystem'' should be
antisymmetric according to all electrons.

2. The antisymmetric products of the wave functions
of isolated systems are not eigenfunctions of Ĥ0, where
Ĥ0 is formed as the sum of Hamiltonians ĤA and ĤB of
isolated systems.

3. The exact eigenfunctions of Ĥ0 are usually not
available and Ĥ0 is then formed fromHamiltonians of the
Hartree-Fock (HF) type; the perturbation operator has to
include also the correlation operators for isolated systems.

Many di�erent theories have been proposed for solv-
ing these problems. The ``symmetry-adapted'' perturba-
tion theories (SAPTs) are, in principle, of two types [14].
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1. Theories based on the zero-order wave function in
the form of simple products of the zero-order wave
functions of isolated systems. These theories have to
force the proper symmetry in consecutive order of
perturbation expansion ± SAPT. The most elaborate of
them is the many-body formulations of SAPT [18±21].

2. Theories based on a zero-order wave function that
has the correct symmetry with respect to all electrons
[22±37]. Such unperturbed wave functions are not
eigenfunctions of the naturally formulated unperturbed
Hamiltonian

Ĥ0 � ĤA � ĤB ; �2�
and an alternative zero-order operator must be con-
structed. The concept of the so-called ``chemical Ham-
iltonian'' of Mayer [38, 39] was used for the BSSE-free
PT for intermolecular interaction proposed by SurjaÂ n
et al. [40±43]. A generally accepted and successful zero-
order Hamiltonian of these types was not formulated
until now [3, 14, 44]. Within the supermolecular
approach, the second-order BSSE-free theory based
upon the ``chemical Hamiltonian approach'' was devel-
oped by Noga and ViboÂ k [45].

The presented perturbation procedure starts from the
zero-order approximation with correct symmetry prop-
erties as suggested by Basilevsky and Berenfeld [22] and
generalized by KvasnicÏ ka et al. [46]. Here the non-
orthogonality problem was transformed into a Hamil-
tonian, and antisymmetry was ensured by the second
quantization formalism.

The purpose of our work is to extend the diagram-
matic Rayleigh-SchroÈ dinger perturbation theory (RSPT)
for the interaction of two closed-shell systems suggested
by KvasnicÏ ka et al. [46] up to the third order and to
compare the interaction energy values for He2 obtained
by the presented method with the supermolecular ap-
proach, perturbation calculation in biorthogonal basis
sets and SAPT results. Laurinc et al. [47] and SurjaÂ n and
del Valle [48] presented the ®rst results in this approach up
to the second order for (He)2, �H2�2 and (H2O�2 systems.

2 Construction of the Hamiltonian
in an orthogonalized basis set

Let us consider two interacting closed-shell systems A
and B (atoms or molecules) characterized by two sets of
spin orbitals (localized on systems A and B). We assume
that these spin orbitals are the HF molecular orbitals
(MOs) for isolated systems A and B

UA
0 � juI

�
; I 2 A

� 	
; �3a�

UB
0 � juJ

�
; J 2 B

� 	
: �3b�

The supersystem MO vector jUAB
0

�
is formed from the

above vectors Eqs. (3a, b). The block scheme of the MO
coe�cients for supersystem AB has the following form.

CA
0 0
0 CB

0

� �
: �4�

Let us assume that a transformation of the MO vector
jUAB

0

�
from Eq. (4) into the new orthonormal vector

jWAB
0

�
exists satisfying the following condition

lim
R!1

WAB
0

� ��� ��UAB
0

E
: �5�

The Hamiltonian of the dimer AB in the second
quantization formalism may be expressed as

ĤAB � WAB
0 ĤAB
�� ��WAB

0


 �� ĤAB
0 � ĤAB

1 : �6�
After subtracting the HF energies of the isolated systems
WAB

0 ĤAB
�� ��WAB

0


 �
we obtain the zero-order interaction

energy e0:

e0 � WAB
0 ĤAB
�� ��WAB

0


 �ÿ UA
0 ĤA
�� ��UA

0


 �ÿ UB
0 ĤB
�� ��UB

0


 �
:

�7�
The e0 can be separated into the electrostatic and
exchange-penetration parts [46]

e0 � eelst � eexÿpn : �8�
This energy is equal to the DE1 interaction energy in the
Morokuma decomposition of the SCF interaction
energy [17]. The eelst represents the electrostatic interac-
tion between the nuclear and electronic charge distribu-
tions given by wave functions UA

0 and UB
0 [49]. The ®rst-

order exchange-penetration energy eexÿpn results from
the antisymmetry of the zero-order wave functions of the
dimer system and from the orthogonalization of the
MOs [4]. The decomposition of the e0 into the electro-
static and exchange contributions was discussed by
Jeziorski et al. [50], where the explicit formula for the
®rst-order interaction energy of many closed-shell
molecules was derived.

A zero-order Hamiltonian ĤAB
0 is de®ned as the sum

of Fock operators constructed from isolated orbital
energies of monomers A and B:

ĤAB
0 �

X
I2A

eI N X̂�I X̂I
� ��X

J2B

eJ N X̂�J X̂J
� �

: �9�

The perturbation operator ĤAB
1 is

ĤAB
1 �

X
I ;J2AB

IjujJh iN X̂�I X̂J
� �

� 1

2

X
I ;J ;K;L2AB

IJ jKLh iN X̂�I X̂�J X̂LX̂K
� �

; �10�

where the one-particle elements hIjujJi are the matrix
elements of the HF operator in an orthogonalized basis
set without isolated monomer orbital energies [46] and
capital letters are used for spin orbitals.

2.1 Second-order contributions to the interaction energy

The interaction energy up to the second order of the PT
is given in [46] and has the following orbital form

EPT2 � e0 �
Xun
p2AB

Xocc
i2AB

2�u�pi �u�ip
.

ei
p

�
Xun

p;q2AB

Xocc
i;j2AB

vpq
ij ~vpq

ij

.
eij

pq ÿ EMP2
A ÿ EMP2

B ; �11�

where �u�pi are the matrix elements of the hpjujii, vpq
ij

are the two particle molecular integrals hpqjiji,
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~vpq
ij � 2vpq

ji ÿ vpq
ij and the ei

p � ei ÿ ep and eij
pq � ei � ej

ÿep ÿ eq. In all cases the occupied (virtual) orbitals are
labelled by i; j; k; l �p; q; r; s� indices. EMP2

A �EMP2
B � denotes

the second-order Mùller-Plesset correlation energy for
A(B).

The second term in Eq. (11) represents the second-
order mono-excited contributions to the interaction en-
ergy (e�2�mono); it can be expressed as the sum of polar-
ization energy e�2�pol �p; i 2 A�B�� and delocalization
energy e�2�del �p 2 B�A�; i 2 A�B��. The sum of the last
three terms in Eq. (11) (later denoted as e�2�bi ) corresponds
to DE2

disp in a notation of SurjaÂ n and del Valle [48] and
represents bi-excited contributions to the interaction
energy up to the second-order of the PT. In the e�2�bi the
second-order dispersion (e�2�disp) and second-order ex-
change-dispersion (e�2�exÿdisp) energy in orthogonalized
basis set might be distinguished (see Fig. 1).

2.2 Third-order contributions to the interaction energy

The interaction energy contributions up to the third
order of the PT may be formulated in a similar way.
However, the number of individual diagrammatic terms
grows signi®cantly. The standard form of the third-order
diagrams with two- and one-particle vertices may be
found for example in [51]. When the orbitals are real
functions, the algebraic interpretations of the diagrams
lead to the following expression for the interaction
energy up to the third order

EPT3 � EPT2 �
Xun

p;q2AB

Xocc
i;j;k;l2AB

vpq
ij vij

kl~v
pq
kl

.
eij

pqe
kl
pq

�
Xun

p;q;r;s2AB

Xocc
i;j2AB

vpq
ij vpq

rs ~vrs
ij

.
eij

pqe
ij
rs

�
Xun

p;q;r2AB

Xocc
i;j;k2AB

~vpq
ij 2vqr

jk ÿ vjq
kr

� �
~vpr

ik

h
ÿ3vqp

ij vjq
krv

rp
ik

i
.

eij
pqe

ik
pr

ÿ EMP3
A ÿ EMP3

B �
Xun

p;q2AB

Xocc
i2AB

2�u�pi �u�pq�u�qi
.

ei
pe

i
q

ÿ
Xun
p2AB

Xocc
i;j;2AB

2�u�ip�u�ij�u�jp
.

ei
pe

j
p

�
Xun

p;q;2AB

Xocc
i;j;2AB

4�u�iq�u�jp~vpq
ji

.
eij

pqe
i
q

�
Xun

p;q2AB

Xocc
i;j2AB

2�u�pi �u�jq 2vpq
ij ÿ vqj

pi

� �.
ei

pe
j
q

ÿ
Xun

p;q2AB

Xocc
i;j;k2AB

2vpq
ik �u�ij~vpq

jk

.
eik

pqe
jk
pq

�
Xun

p;q;r2AB

Xocc
i;j2AB

2vpr
ij �u�pq~vqr

ij

.
eij

pre
ij
rq

�
Xun

p;q;r2AB

Xocc
i;j2AB

4�u�rjvpq
ij ~vpq

ir

.
eij

pqe
j
r

ÿ
Xun

p;q2AB

Xocc
i;j;k2AB

4�u�qkvpq
ij ~vpk

ij

.
eij

pqe
k
q: �12�

The physical interpretation of the higher than second-
order diagrams is not straightforward. Introducing the
border line for the orbital separation from system A(B)
it is possible to distinguish the pure dispersion, pure
polarization as well as the so-called mixed terms
(i.e. polarization-correlation, polarization-dispersion)
(Fig. 1). The sum of the second to ®fth terms in Eq.
(12) was denoted as e�3�bi . They represent the third-order
biexcited contributions to the interaction energy.

2.3 The problem of BSSE

If the monomer HF wave functions are calculated in the
framework of a subset of ®nite basis functions localized
on system A(B), the interaction energies will su�er from
the BSSE. To correct for this artefact in calculation of
intermolecular energies in orthogonalized basis sets the
counterpoise correction recipe has been used by SurjaÂ n
and del Valle [48]. In this section we suggest another
treatment for correction of this error.

In the case of in®nite distance between system A and
the dummy functions on the centres [B], the following
limit relations are valid for system A (and similarly for
B with dummy functions on the centres [A]):

lim
R!1

ESCF
A�B� � ESCF

A ; �13a�
lim

R!1
EMP2

A�B� � EMP2
A ; �13b�

lim
R!1

EMP3
A�B� � EMP3

A : �13c�

Fig. 1a±f. The Goldstone diagrams for a dispersion (e�2�disp),
b exchange-dispersion (e�2�exÿdisp) e�ects of the second-order pertur-
bation theory (PT) and c dispersion (e�3�bi ). This diagram has four
possible orientations: d polarization, e polarization-dispersion,
f polarization-correlation e�ects of the third-order PT. A two-
particle operator in an orthogonalized basis set is denoted by ±d±,
and a one-particle operator u by ±s±
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Let us assume that the solution for this system is known
and the matrix-block scheme for system A (in dimer-
centred basis set, RA�B� � 1) has the following form

CA
0 0

0 C�B�0

� �
: �14�

For RA�B� 6� 1 we must ®nd a new orthonormal vector
jWA�B�

0 i via the same orthogonalization procedure as for
the supersystem. The Hamiltonian for subsystem A[B] in
the second quantization formalism may be expressed as

ĤA�B� � WA�B�
0 ĤA�B��� ��WA�B�

0

D E
� ĤA�B�

0 � ĤA�B�
1 : �15�

After subtracting the scalar parts of the isolated systems
in the dimer-centered basis set from WAB

0 ĤAB
�� ��WAB

0


 �
we

obtain the BSSE-corrected zero-order interaction energy
eCP0 :

eCP0 � WAB
0 ĤAB
�� ��WAB

0


 �ÿ WA�B�
0 ĤA�B��� ��WA�B�

0

D E
ÿ W�A�B0 Ĥ �A�B

�� ��W�A�B0

D E
:

�16�

The unperturbed part of the Hamiltonian Eq. (15) is
de®ned as the sum of the Fock operators constructed
from the orbital energies of the constituting monomer A
and centres [B]. It may be written in the diagonal form

ĤA�B�
0 �

X
I2A

eI N X̂�I X̂I
� ��X

J2�B�
eJ N X̂�J X̂J

� �
; �17�

and the perturbation operator ĤA�B�
1 has the form

ĤA�B�
1 �

X
I ;J2A�B�

hIjujJiA�B�N X̂�I X̂J
� �

� 1

2

X
I ;J ;K;L2A�B�

hIJ jKLiA�B�N X̂�I X̂�J X̂LX̂K
� �

: �18�

Applying the many-body diagrammatic formalism, the
second-order contribution to the subsystem energy A[B]
in the orthogonalized basis set may be expressed as

EPT2
A�B� �

Xun
p2A�B�

Xocc
i2A�B�

2 uA�B�
� �p

i
uA�B�
� �i

p

.
eA�B�
� �i

p

�
Xun

p;q2A�B�

Xocc
i;j2A�B�

vA�B�
� �pq

ij
~vA�B�
� �pq

ij

.
eA�B�
� �ij

pq
:

�19�
The ®rst term in Eq. (19) represents the BSSE correction
of the polarization and delocalization energies of the
subsystem A[B]. The second term is the second-order
monomer correlation energy calculated in the dimer-
centred orthogonalized basis set. After substituting EPT2

A�B�
and EPT2

�A�B for EMP2
A and EMP2

B in Eq. (11) we obtain the

BSSE corrected interaction energy EPT2
CP . The same ideas

were used in the calculation of the EPT3
CP .

3 Basis set orthogonalization

LoÈ wdin's symmetric Sÿ1=2 transformation [52] may be
applied as a straightforward method for the orthogo-

nalization of the MOs of the interacting systems. This
treatment minimizes the ``distance'' between the non-
orthogonal and orthogonal sets [53]. In the global Sÿ1=2
transformation, the occupied orbitals on fragment A are
mixed with the virtual orbitals on fragment B. However,
this leads to repulsion and delocalization energies being
too large [54], and to a slow convergence of the
perturbation expansion. In order to avoid the occu-
pied-virtual mixing in an orthogonalization over the
whole basis set we used the method suggested in [55].
MOs occupied in the ground state determinants of the
subsystems were orthogonalized by means of the Sÿ1=2
procedure in the ®rst step. Afterwards, the virtual
orbitals were projected onto the subspace orthogonal
to the space of the orthogonalized occupied orbitals and
then mutually reorthonormalized by the Sÿ1=2 proce-
dure.

4 Results and discussion

In order to check the applicability of the proposed
perturbation treatment, we present a study of the
interaction energy of the He. . .He system. To compare
our results with those of Woon [56] and SurjaÂ n and del
Valle [48], we used the same augmented correlation-
consistent basis set of Woon and Dunning (aug-cc-
pVTZ [6s2p1d=3s2p1d � 1s1p1d]) [57]. All calculations
in the presented PT and supermolecular approach were
done within our program code interfaced with the
MOLCAS-3 package [58]. The atomic one- and two-
electron integrals, the SCF orbital energies and eigen-
vectors generated with the GAUSSIAN 92 package [59]
were used for the calculations of the SAPT interaction
energy contributions [60].

In Fig. 2 we summarize our BSSE non-corrected re-
sults obtained by the presented perturbation method.
The second-order interaction energy curve EPT2 is com-
parable with the supermolecular approach, but the third-
order results display an opposite behaviour. The non-
corrected third-order contribution (EPT3 ÿ EPT2) is
repulsive and leads to larger equilibrium distance and
larger di�erences between EPT3and EMP3potential curves.

Fig. 2. Potential curves for the He. . .He interaction; s presented PT
(EPT2); d presented PT (EPT3); ( supermolecular calculation
(EMP2); j supermolecular calculation (EMP3)
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The BSSE-corrected results are presented in Fig. 3.
The curves of the total interaction energy EPT2

CP and EMP2
CP

are almost identical. Presented EPT2 data corrected on
the BSSE using the method described in Sect. 2.3 are in
better agreement with EMP2

CP than EPT2 data published by
SurjaÂ n and del Valle [48]. Their formulation of the PT in
orthogonal basis set was practically identical with our
treatment except the correction of EMP2

A and EMP2
B

Eq. (11).
The total interaction energy EPT3

CP is very close to the
value obtained by the SAPT approach. The partitioning
of the interaction energy contributions at the experi-
mental minimum is given in Table 1. The sum of the

polarization energy e�2�pol and the delocalization energy e�2�del
represents the second-order mono-excited e�2�mono contri-
bution. In order to compare these terms with the
supermolecular approach, we used the Morokuma
decomposition of the SCF interaction energy. The de-
composition of DESCF into the DE1 (sum of the elec-
trostatic and ®rst-order exchange-penetration energies)
and DE2 (sum of the delocalization and polarization
energies) is performed in two steps [61]. DE1 is obtained
easily from the supersystem SCF energy in the ®rst it-
eration, if the orthogonalized occupied orbitals of iso-
lated subsystems are used as starting vectors (Eq. 4) and
the monomer energies are subtracted (DE1 � ESCFÿ1

AB ÿ
ESCF

A ÿ ESCF
B ). In the second step the SCF calculation is

allowed to reach self-consistency and from the con-
verged supersystem energy we obtain
DE2�DE2 � ESCF

AB ÿ ESCFÿ1
AB �. Using the similar scheme in

BSSE-corrected calculation of the monomer energies in
dimer-centred basis set, we may de®ne the terms DE1

CP
and DE2

CP:

DE1
CP � DE1 ÿ ESCFÿ1

A�B� � ESCFÿ1
�A�B ÿ ESCF

A ÿ ESCF
B

� �
;

�20�

DE2
CP � DE2 ÿ ESCF

A�B� � ESCF
�A�B ÿ ESCFÿ1

A�B� ÿ ESCFÿ1
�A�B

� �
:

�21�
In the above equations, ESCFÿ1

A�B� represents the ®rst
iteration SCF energy for the system A in the dimer-
centred basis set, if orthogonalized occupied orbitals of
eigenvectors matrix (Eq. 14) are used. ESCF

A�B� is the
converged SCF energy of system A with dummy
functions on [B]. A similar notation is used also for
the system B with dummy functions on the centres [A].

Table 1. Individual contribu-
tions to the interaction energy
(in microhartree) at the experi-
mental minimum �R � 5:6
bohr). Values in parentheses are
corrected for basis set super-
position error (BSSE). PT,
Perturbation theory; SAPT,
symmetry adapted perturbation
theory

Presented PT Supermolecular approach SAPTa

eelst )4.9 eelst )4.9 Eelst )5.1
eexÿpn 34.6 eexÿpn 34.6 E�10�exch 35.6
e0 29.7 (29.7) DE1 29.7 (29.7)

e�2�pol )0.0

e�2�del )1.9

e�2�mono )1.9 ()0.7) eSCFpol�del )2.1 ()0.7) E�20�ind )0.7

EPT
1 27.8 (29.0) DESCF 27.6 (29.0) ESCF d

SAPT 30.4

e�2�disp )41.1 eHF�2� bdisp )44.2 E�20�disp )47.4

e�2�exÿdisp 0.0 E�20�exÿdisp 1.1

e�3�disp 0.1 eHF�3� cdisp 0.2 E�30�disp 0.3

e�2�bi )49.2 ()45.3) DEMP2 )48.1 ()43.9) Ef2gdisp )57.3

e�3�bi )5.1 ()8.1) DEMP3 )6.5 ()7.5) Ecorr e
SAPT )54.7

EPT2 )21.4 ()16.3) EMP2 )20.5 ()14.9) ESAPT f
int )24.3

EPT3 )4.3 ()25.2) EMP3 )27.0 ()22.4)

a For notation and explanation see [60]
b See Ref. [62]
c See Ref. [12]
d ESCF

SAPT � Eelst � E�10�exch � E�20�ind � E�20�exÿind
e Ecorr

SAPT � Ef2gdisp � E�20�exÿdisp � Ef1gpol � Ef1gexch
f ESAPT

int � ESCF
SAPT � Ecorr

SAPT

Fig. 3. Potential curves for the He. . .He interaction with basis set
superposition error (BSSE) correction; s presented PT (EPT2); d
presented PT (EPT3); ( supermolecular calculation (EMP2); j
supermolecular calculation (EMP3); + biorthogonal formalism up
to the second order of PT (data are taken from [48]); � SAPT
formalism (ESAPT

int )
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In the SAPT formalism the leading exchange cor-

rections of ESCF
SAPT are E�10�exch and E�10�exchÿind [60]. The sum of

these terms is more repulsive (20% ) than our eexÿpn. The
attractive part of the HF interaction energy is formed
by the electrostatic, delocalization, and polarization
contributions.

Our results indicate that the dispersion energy con-
tributions (e�2�disp > eHF�2�disp > E�20�disp) form the main attrac-
tive parts of the interaction energy for He2. The

exchange-dispersion energies e2exÿdisp and E�20�exÿdisp and

dispersion energies up to the third order (e�3�disp <
eHF�3�disp < E�30�disp) (see Table 1) are relatively small positive

values. The contribution e�2�exÿdisp � 1:5 � 10ÿ2 lH is very

small in relation to E�20�exÿdisp from SAPT. So far the best

estimates of the second- and third-order supermolecular
interaction energies for (He)2 were recently published by
Bukowski et al. [63]. Our DEMP2

CP � ÿ43:9 lH represents
86.7% of E�2�int , and DEMP3

CP within our basis set forms
94.3% of their benchmark value E�3�int � 7:95 lH at

R � 5:6 bohr. Our E�2�disp represents 75% of the saturated

E�20�disp value.

The main purpose of our work was not to reproduce
experimental potential curves, but to compare the results
of the presented PT with other approaches. In the last
two rows of Table 1 we compare the total interaction
energies for He2 obtained by means of various methods.
The potential energy parameters e, Re of Woon [56],
SurjaÂ n and del Valle [48] and our calculations are com-
pared in Table 2. Our second- and third-order BSSE-
corrected interaction energies are about 10% more at-
tractive than supermolecular EMP2

CP and EMP3
CP and are

very close to the SAPT interaction energy at the level
coded in [60]. However, when the global Sÿ1=2 trans-
formation of a monomer MO was used, we obtained
non-physically large delocalization energy, and EPT

1 was
signi®cantly di�erent from DESCF and the interaction
energy from supermolecular approach. The occupied
orbitals must be projected out from the virtual ones
prior to orthogonalizing the dimer basis set to obtain
reliable interaction energies. This conclusion was con-
®rmed also in [48]. Computational artefacts due to the
orthogonalization of the basis set still exist in this ap-
proach. We suppose that the BSSE correction described

in Sect. 2.3 compensates for these artefacts and allows
for better agreement between PT and the supermolecular
approach than in [48].

Very good interaction energy values for the helium
dimer interaction were calculated recently by Klopper
and Noga [64] using a 11s8p6d5f 4g basis set. They es-
timated the energy minimum of ÿ33:8 lH (at 5.6 a.u.) at
the CCSDT-1a-R12 level and of ÿ34:8 lH for full CI.
Similarly, Rybak et al. [65] obtained ÿ33:7 lH at the
same distance using an explicitly correlated Gaussian
geminal basis set. Another ab initio calculation has been
published recently by van Mourik and van Lenthe [66],
Hayes et al. [67] and CÂ wiok et al. [68]. Our third-order
energy minimum represents about 72% of these values,
very close to the experimental minimum. From inspec-
tion of Table 2 we see that our energy minimum forms
94.6% of the CI value in the same basis and Re is 0.02
bohr larger than the FCI value. The potential energy
curve from the PT formulated in the biorthogonal basis
is more repulsive with larger Re.

5 Conclusion

We have extended the previously suggested [46] dia-
grammatic RSPT for the interaction of two closed-shell
systems through the third order of perturbation. The
preliminary calculation of the interaction energy of the
He2 system has con®rmed the objections to the global
Sÿ1=2 orthogonalization of the MOs of the interacting
systems formulated earlier [54].

The second-order approximation to the SCF inter-
action energy obtained by the stepwise orthogonaliza-
tion of occupied and virtual orbitals is in very good
agreement with the SCF interaction energy values from
the supermolecular approach. The presented PT o�ers
an alternative to the separation of the SCF interaction
energy with physical interpretation [69].

As discussed above, the problem of antisymmetry
plays an important role in the intermolecular PT. Every
PT type has its own peculiarity. The SAPT formalism is
formulated in a basis set independent way and by de®-
nition is free from BSSE. A basis set convergence exists
in the SAPT method for each physical component of
interaction energy and contributions with slow conver-
gence can be calculated in a larger basis set. However,
assurance of the proper symmetry in SAPT is more
complicated than in the ``symmetric PT''. In ``symmetric
PT'' (orthogonal or biorthogonal formalism) the anti-
symmetry of the wave functions is automatically ensured
and the resulting equations are more simple. The disad-
vantage of the ``symmetric'' formalism is that it is usually
connected to a given basis set [48] and the presented PT
cannot be formulated in a basis set independent way. The
limiting factor for this approach as well as for the ap-
proaches based on the biorthogonal orbitals [31, 41] is
the complete set of basis set functions. If basis setsUA

0 and
UB
0 are complete, then set U

AB
0 (Eq. 2) is overcomplete, the

overlap matrix is singular and Sÿ1=2 does not exist.
The second- and third-order corrections appear as

di�erences in large numbers, cf. Eq. (11) and Eq. (12).
The direct formulation of these contributions [46] leads

Table 2. Well depth �e� and equilibrium distance �Re� for He2.
Values in parentheses are corrected for BSSE. Energies are in
microhartree

Method/property ÿe Re (bohr)

EPT2 26.9 (18.9) 6.05 (5.85)
EPT3 13.2 (26.5) 6.15 (5.75)
EMP2a 22.57 (17.9) 5.864 (5.921)
EMP3a 27.97 (23.7) 5.764 (5.799)
CCSDa 28.05 (23.7) 5.775 (5.807)
CCSD(T)a 31.51 (27.0) 5.709 (5.744)
Full CIa 32.27 (28.0) 5.683 (5.729)
Biort.b (15.0) (6.0)
ESAPT
int (25.4) (5.80)

a Woon [56]
b SurjaÂ n and del Valle [48]
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to a complicated computation algorithm and is signi®-
cantly more expensive than the supermolecular ap-
proach.

We conclude that the presented version of the third-
order MBPT produces qualitatively correct potential
curves having a correct asymptotic behaviour, an ac-
ceptable estimation of the equilibrium distance, as well
as the energy minimum. The interaction contributions
are comparable with those obtained by other treatments
(see Table 1). The inclusion of the suggested BSSE cor-
rection leads to a considerable improvement of the PT
interaction energy curves (compare Figs. 2 and 3).

The dependence of the presented PT on the basis set
and the inevitability of the BSSE correction reduce the
applicability of this ``symmetric'' approach as compared
to SAPT.
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